A novel kernel-based maximum a posteriori classification method
نویسندگان
چکیده
Kernel methods have been widely used in pattern recognition. Many kernel classifiers such as Support Vector Machines (SVM) assume that data can be separated by a hyperplane in the kernel-induced feature space. These methods do not consider the data distribution and are difficult to output the probabilities or confidences for classification. This paper proposes a novel Kernel-based Maximum A Posteriori (KMAP) classification method, which makes a Gaussian distribution assumption instead of a linear separable assumption in the feature space. Robust methods are further proposed to estimate the probability densities, and the kernel trick is utilized to calculate our model. The model is theoretically and empirically important in the sense that: (1) it presents a more generalized classification model than other kernel-based algorithms, e.g., Kernel Fisher Discriminant Analysis (KFDA); (2) it can output probability or confidence for classification, therefore providing potential for reasoning under uncertainty; and (3) multi-way classification is as straightforward as binary classification in this model, because only probability calculation is involved and no one-against-one or one-against-others voting is needed. Moreover, we conduct an extensive experimental comparison with state-of-the-art classification methods, such as SVM and KFDA, on both eight UCI benchmark data sets and three face data sets. The results demonstrate that KMAP achieves very promising performance against other models.
منابع مشابه
Kernel Maximum a Posteriori Classification with Error Bound Analysis
Kernel methods have been widely used in data classification. Many kernel-based classifiers like Kernel Support Vector Machines (KSVM) assume that data can be separated by a hyperplane in the feature space. These methods do not consider the data distribution. This paper proposes a novel Kernel Maximum A Posteriori (KMAP) classification method, which implements a Gaussian density distribution ass...
متن کاملFault diagnosis of gearboxes using LSSVM and WPT
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...
متن کاملStudying Influence of Preheating Conditions on Design Parameters of Continuous Paint Cure Ovens
This paper concentrates on a new procedure which experimentally recognises gears and bearings faults of a typical gearbox system using a least square support vector machine (LSSVM). Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared to select an appropriate wavelet for feature extraction. The fault diagnosis method co...
متن کاملar X iv : 0 71 1 . 39 28 v 1 [ m at h . N A ] 2 5 N ov 2 00 7 A POSTERIORI ERROR ESTIMATES IN THE MAXIMUM NORM FOR PARABOLIC PROBLEMS ∗
Abstract. We derive a posteriori error estimates in the L∞((0, T ];L∞(Ω)) norm for approximations of solutions to linear parabolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic problems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then estab...
متن کاملRemote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery
Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2009